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AAABBBSSSTTTRRRAAACCCTTT 28 
 29 

We examine processes that influence North Pacific sea surface temperture (SST) 30 

anomalies including surface heat fluxes, upper-ocean mixing, thermocline variability, 31 

ocean currents and tropical-extratropical interactions via the atmosphere and ocean. The 32 

ocean integrates rapidly varying atmospheric heat flux and wind forcing and thus a 33 

stochastic model of the climate system, where white noise forcing produces a red 34 

spectrum, appears to provide a baseline for SST variability even on decadal time scales.  35 

However, additional processes influence Pacific climate variability including the 36 

“reemergence mechanism” where seasonal variability in mixed layer depth allows surface 37 

temperature anomalies to be stored at depth during summer and return to the surface in 38 

the following winter. Wind stress curl anomalies in the central/east Pacific drive 39 

thermocline variability that propagates to the west Pacific, via baroclinic Rossby waves 40 

and influences SST by vertical mixing and the change in strength and position of the 41 

ocean gyres. Atmospheric changes associated with ENSO also influence North Pacific 42 

SST anomalies via the “atmospheric bridge”. 43 

 The dominant pattern of North Pacific SST anomalies, the “Pacific Decadal 44 

Oscillation” (PDO), exhibits variability on interannual as well as decadal time scales.  45 

Unlike ENSO, the PDO does not appear to be a mode of the climate system but rather it 46 

results from several different mechanisms including i) stochastic heat flux forcing 47 

associated with random fluctuations in the Aleutian low, ii) the atmospheric bridge 48 

augmented by the reemergence mechanism and iii) wind-driven changes in the North 49 

Pacific gyres.  50 

51 
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1) INTRODUCTION 51 

There are several reasons why the oceans play a key role in climate variability at 52 

interannual and longer time scales. Due to the high specific heat and density of sea water, 53 

the heat capacity of an ocean column ~2.5 m deep is as large as the entire atmosphere 54 

above it. In addition, the upper ocean is generally well mixed and sea surface temperature 55 

anomalies (SSTAs) extend over the depth of the mixed layer tens to hundreds of meters 56 

below the surface. As a result SSTA, the primary means through which the ocean 57 

influences the atmosphere, can persist for months or even years. In addition to 58 

thermodynamic considerations, many dynamical ocean processes are much slower than 59 

their atmospheric counterparts. For example, relatively strong currents such as the Gulf 60 

Stream and Kuroshio are on the order of 1 m s-1 roughly two orders of magnitude slower 61 

than the jet stream in similar locations. Midlatitude ocean gyres take 5-10 years to fully 62 

adjust to the wind forcing that drives them and exchanges with the deeper oceans, via 63 

meridional overturning circulations, can take decades to centuries.  64 

Beginning with the pioneering work of Namias [e.g. 1959, 1963, 1965, 1969] and 65 

Bjerknes [1964], many studies have sought to understand the temporal and spatial 66 

structure of midlatitude SSTAs and the extent to which they influence the atmosphere. 67 

The dominant pattern of SST variability over the North Pacific exhibited pronounced 68 

low-frequency fluctuations during the 20th century and was thus termed the Pacific 69 

Decadal Oscillation (PDO) by Mantua et al. [1997]. The fluctuations in the PDO have 70 

been linked to many climatic and ecosystem changes and thus has become a focal point 71 

for studies of Pacific climate variability. In this chapter, we examine processes that 72 
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influence extratropical SST anomalies and mechanisms for generating Pacific decadal 73 

variability including the PDO.  74 

This chapter is structured as follows: basic properties of the North Pacific Ocean 75 

including the mean SST and its interannual variability, the vertical structure of 76 

temperature and the three-dimensional flow are described in section 2; the terms that 77 

contribute to the surface heat budget and thus the SST tendency are examined in section 78 

3; the processes that generate and maintain North Pacific SST anomalies, including 79 

stochastic forcing, upper ocean mixing, ocean currents and Rossby waves, dynamic 80 

extratropical air-sea interaction and teleconnections from the tropics are explored in 81 

section 4.  The PDO and its underlying causes are described in section 5, while section 6 82 

examines other potential sources of variability and processes/patterns that occur in other 83 

extratropical ocean basins. 84 

 85 

2) MEAN UPPER OCEAN CLIMATE 86 

North Pacific SST variability is strongly shaped by the climate and circulation of the 87 

upper ocean. The mean SST field features nearly zonal isotherms across most of the 88 

Pacific with a strong gradient near 40ºN, indicative of the subpolar front (consisting of 89 

the Oyashio and Kuroshio fronts with a mixed water region in between) that separates the 90 

two main gyres in the North Pacific (Figure 1a). In the eastern Pacific, the curvature of 91 

the isotherms is consistent with the structure of the currents where the subpolar gyre turns 92 

north and the subtropical gyre south (Figure 2). The weaker subtropical front, which is 93 

more prominent in the SST standard deviation (σ) field (Figure 1b) than in the mean SST 94 

field, extends southwestward from approximately 35°N, 135°W to 20°N, 180°. The mean 95 
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isotherms bulge north in the vicinity of Japan associated with the warm water transport 96 

by the Kuroshio current, which turns eastward between 35°-40°N as the Kuroshio 97 

Extension (KE) and then the North Pacific Current. SST variance maxima are located 98 

along the KE/subpolar front, the subtropical front, in the Bering Sea and along the coast 99 

of North America (Figure 1b). 100 

The surface layer over most of the world’s oceans is vertically well mixed and thus, 101 

heating/cooling from the atmosphere spreads from the surface down to the base of the 102 

mixed layer (h). Due to the large thermal inertia of the surface layer, SSTs reach a 103 

maximum in August-September and a minimum in March (Fig. 3), about three months 104 

after the respective maximum and minimum in solar forcing, compared to a one month 105 

lag for land temperatures. Beneath the warm shallow mixed layer in summer lies the 106 

seasonal thermocline where the temperature rapidly decreases with depth. The mixed 107 

layer is deepest in late winter, when it ranges from 100 m over much of the North Pacific 108 

and 200 m in the KE region but shoals to around 20-30 m in late spring and summer 109 

(Figures 3 and 4).  Since h is approximately 5–20 times smaller in summer than in winter, 110 

less energy is required to heat/cool the mixed layer leading to larger SSTA variability 111 

(departures from the seasonal mean) in summer compared with winter. 112 

In the vertical plane the wind-driven upper ocean circulation consists of a shallow 113 

meridional overturning circulation, the subtropical cell (STC, Figure 5a). In the 114 

subtropics and midlatitudes, water subducts, i.e. it leaves the mixed layer via downward 115 

Ekman pumping and lateral induction via horizontal advection across the sloping base of 116 

the mixed layer, and enters the main thermocline (Figure 5b). It flows downward and 117 

equatroward along isopycnal surfaces where some of the water: i) returns to midlatitudes 118 
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via the southern and western branches of the subtropical gyre, ii) reaches the western 119 

boundary equatorward of ~20°S, and then flows towards the tropics and then eastward 120 

along the equator or iii) has a convoluted pathway in the ocean interior (Figure 5b).  121 

Water in ii) and iii) upwells at the equator, and then returns to the subtropics in the thin 122 

surface Ekman layer (Figure 5a). Observations [Huang and Qiu, 1994; Johnson et al., 123 

1999], modeling studies [McCreary and Lu, 1994; Liu, 1994; Qu et al., 2002] and 124 

analyses of transient tracers such as tritium from nuclear bomb tests [Fine et al., 1981; 125 

Fine et al., 1983], suggest that subduction zones in the North Pacific contribute much of 126 

the water within the equatorial undercurrent which then reaches the surface in the eastern 127 

equatorial Pacific. Thus, variations in the temperature or strength of this cell could alter 128 

conditions in the equatorial Pacific on decadal time scales including modulating ENSO 129 

variability. 130 

 131 

3) SST TENDENCY SURFACE HEAT BUDGET  132 

Following Frankingoul [1985], the SST tendency equation, derived by integrating the 133 

heat budget over the mixed layer (ML), can be written as: 134 
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where Tm is the ML temperature, which is equivalent to the SST for a well mixed surface 139 

layer, 
 
Q

net
 the net surface heat flux, 

o
!  and

p
c are the density and specific heat of ocean 140 
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water, w the mean vertical motion, we the entrainment velocity – the turbulent flux 141 

through the base of the ML, Tb the temperature just below the ML, v the horizontal 142 

velocity, Qswh the penetrating solar radiation at h and A the horizontal diffusion 143 

coefficient. The terms in Equation 1 are: I) surface heating/cooling; II) vertical 144 

advection/mixing; III) horizontal advection; IV) sunlight exiting the base of the mixed 145 

layer and V) horizontal diffusion due to eddies. 146 

The net surface heat exchange has four components: the shortwave (Qsw), longwave 147 

(Qlw), sensible (Qsh) and latent (Qlh) heat fluxes. Variability in the sensible and latent heat 148 

fluxes, which are functions of the near surface wind speed, air temperature and humidity, 149 

and SST, dominate Qnet in winter, since the atmospheric internal variability and mean air-150 

sea temperature difference is much larger during the cold season. Anomalies in Qlh and 151 

Qsh are about the same magnitude at high latitudes, while Qlh >> Qsh in the tropics and 152 

subtropics, since warm air holds more moisture and small changes in temperature can 153 

lead to large changes in specific humidity (the relative humidity is nearly constant at 154 

about 75-80% over the ocean).  Anomalies in Qsh and Qlh are primarily associated with 155 

wind speed anomalies in the tropics and subtropics but are more dependent on 156 

temperature and humidity anomalies at mid to high latitudes. In general, Qlw, varies less 157 

than the other three components but is generally in phase with the latent and sensible 158 

flux. Fluctuations in cloudiness, especially stratiform clouds, have a strong influence on 159 

Qsw over the North Pacific in spring and summer.  160 

In the open ocean, the vertical mass flux into the mixed layer is primarily due to 161 

entrainment [Frankignoul, 1985; Alexander, 1992a], i.e. we > w, although the latter is 162 

critical for driving the ocean circulation. The ML deepens via entrainment; anomalies in 163 
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we are primarily generated by wind stirring in summer and surface cooling in fall and 164 

winter [Alexander et al., 2000]. The mixed layer shoals by reforming closer to the 165 

surface; there is no entrainment at that time (we = 0) and h is the depth at which there is a 166 

balance between surface heating (positive buoyancy flux), wind stirring and dissipation. 167 

In general, deepening occurs gradually over the cooling season while the mixed layer 168 

shoals fairly abruptly in the spring. Anomalies in h can impact the heat balance of the ML 169 

especially in spring and summer: if the ML shoals earlier than usual, the average net heat 170 

flux will heat up the thinner surface layer more rapidly, creating positive SST anomalies 171 

[Elsberry and Garwood, 1978].     172 

Horizontal temperature advection is primarily due to Ekman (
  
v

ek
) and geostrophic 173 

(
g
v
r ) currents, although ageostrophic currents associated with eddy activity also impact 174 

SST in coastal regions and near western boundary currents. The integrated Ekman 175 

transport over the mixed layer is given by 
   
v

ek
 = -k ! " /#

o
f , i.e. it is 90º to the right of 176 

the surface wind stress in the Northern Hemisphere. The large-scale currents in the North 177 

Pacific are in geostrophic balance and are part of the subtropical and subpolar gyres.  178 

The contribution of the terms in Equation 1 to SSTA varies as a function of location, 179 

season, and time scale. Qnet variability in term I) is an important component of the heat 180 

budget over most of the Northern Hemisphere oceans from submonthly to decadal 181 

timescales and throughout the seasonal cycle. Entrainment impacts SSTA directly via the 182 

heat flux through the base of the mixed layer (II) and indirectly through its control of h 183 

(in I, II and IV), which have their greatest impact on SSTA in fall and spring 184 

respectively. Since Ekman currents respond rapidly to changes in the wind, they have 185 

nearly an instantaneous impact on SSTA (in III), but can contribute to interannual and 186 
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longer time-scale scale variability if the wind or SST gradient anomalies are long lived. 187 

Ekman advection contributes to SSTA along the subpolar front and in the central Pacific 188 

where strong zonal wind anomalies create anomalous meridional Ekman currents 189 

perpendicular to the mean SST gradient. Changes in the large-scale wind fields over the 190 

North Pacific generate oceanic Rossby waves that slowly propagate westward. The 191 

associated changes in 
  
v

g
and the position and strength of the gyres, impact SSTs on 192 

decadal time scales especially in the KE region. Penetrating solar radiation (IV) and 193 

horizontal diffusion (V) are relatively small and the latter acts to damp SSTA. For more 194 

detailed analyses of the terms contributing to North Pacific SSTA see [Frankignoul and 195 

Reynolds, 1983; Frankignoul, 1985; Cayan 1992a,b,c; Miller et al., 1994; Alexander et 196 

al. 2000; Qiu, 2000, and Seager et al., 2001]. 197 

 198 

4) PROCESSES THAT GENERATE MIDLATIUDE SSTA (PACIFIC FOCUS) 199 

Equation 1 can be used to interpret theoretical and numerical models of the upper 200 

ocean that increase in complexity as more terms on the right hand side are included. For a 201 

motionless ocean with fixed depth h, the temperature (SST) tendency is given by I; the 202 

SST behavior in such a slab ocean can be quite complex given the simplicity of the 203 

model. Including Term II allows for vertical processes in the ocean, which have been 204 

simulated by integral mixed layer models that predict h, or layered models that have 205 

vertical diffusion between layers. While the Ekman term in III can be represented via 206 

heat flux forcing of the mixed layer, the broader impact of currents have been considered 207 

from relatively simple shallow water models to full physics regional and general 208 

circulation models (GCMs). 209 
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 210 

4.1 Stochastic forcing  211 

Hasselmann [1976] proposed that some aspects of climate variability could be 212 

represented by a slow system that integrates random or stochastic forcing. Like particles 213 

undergoing Brownian motion, the slow climate system exhibits random walk behavior, 214 

where the variability increases (decreases) with the square of the period (frequency). 215 

Frankignoul and Hasselmann [1977] were the first to apply a stochastic model to the real 216 

climate system in a study of midlatitude SST variability. The ocean was treated as a 217 

motionless slab where the surface heat flux both forces and damps SST anomalies. The 218 

forcing represents the passage of atmospheric storms, where the rapid decorrelation time 219 

between synoptic events results in a nearly white spectrum (constant as a function of 220 

frequency) over the evolution time scale of SST anomalies. The system is damped by a 221 

linear negative air-sea feedback, which represents the enhanced (reduced) loss of heat to 222 

the atmosphere from anomalously warm (cold) waters and vice-versa. The model may be 223 

written as: 224 

  225 

!ch
dT

m

'

dt
= F

' " #T
m

'  (2)  226 

where a ' denotes a departure from the time mean, F '  is the stochastic atmospheric 227 

forcing (constant for white noise) and λ the linear damping rate whose inverse gives the 228 

decay time. The stochastic model is characterized as a first order autoregressive, AR1, 229 

where the predictable part of T
m

'  (equivalent to SST) depends only on its value at the 230 

previous time. The auto correlation (r) of an AR1 process decays exponentially, i.e., 231 

 r(! ) = exp "#! $ch[ ] ,           (3) 232 
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where !  is the time lag.   233 

The forcing and damping values can be estimated through several different means. If 234 

one assumes that the forcing and feedback are entirely through the net heat flux in nature 235 

then,F 'can be obtained from the Qnet variance [Czaja, 2003], from simple models of the 236 

variables in the bulk formulas [Frankignoul and Hasselmann, 1977; Alexander and 237 

Penland, 1996], or indirectly from the SST variance [Reynolds, 1978;]. The damping 238 

coefficient can be estimated from the SST autocorrelation (e.g. inverting Equation 3), 239 

using typical values in the bulk aerodynamic flux formulas [Lau and Nath, 1996], the 240 

flux response in atmospheric general circulation model (AGCM) experiments to specified 241 

SSTAs [Frankignoul, 1985], or from the covariance between Tm and Q after removing 242 

the ENSO signal [Frankignoul and Kestnare, 2002; Park et al., 2005]. Typical λ-1 values 243 

obtained from these methods are 2-6 months, which corresponds to a flux damping of 10-244 

40 Wm-2 ºC-1, over most of the North Pacific. 245 

The variance spectrum of T
m

' from Equation 2 may be written as:  246 

T
m

'
(! )

2

=
F
'
2

!
2
+ "

2
, (4)  247 

where ω is the frequency and  | |2 indicates the variance or power spectrum. At short time 248 

scales or high frequencies (ω >> λ), the ocean temperature variance increases with the 249 

square of the period (slope of -2 in a log-log spectral plot, Figure 6). At longer time 250 

scales (ω << λ), the damping becomes progressively more important, and the spectrum 251 

asymptotes as negative air-sea feedback limits the magnitude of the SST anomalies. This 252 

red noise spectrum contains variability on decadal and longer time scales but without 253 

spectral peaks. The Hasselmann model has been quite effective at describing the temporal 254 
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variability of mid-latitude SST variability in numerous observational (e.g. Figure 6) and 255 

modeling studies, and should be considered as the null hypothesis for extratropical SST 256 

variability.  257 

Several refinements/extensions have been proposed to the stochastic model for 258 

midlatitude SSTs: 259 

a) The inclusion of additional processes, such as the rapidly varying portions of the 260 

Ekman transport and entrainment in the stochastic forcing [Frankignoul, 1985, 261 

Dommenget and Latif, 2002; Lee et al., 2008]  262 

b) The forcing and feedback are cyclostationary, i.e. F and λ vary with the seasonal 263 

cycle [Frankignoul, 1985: Ortiz and Ruiz de Elvira, 1985; Park et al., 2006]. 264 

c) The damping coefficient is given by! = ! + ! ' , where !  is constant but ! '  265 

varies rapidly and can be approximated by white noise. As a result there is a second, 266 

“multiplicative noise” term that depends upon the SST anomaly (! 'T
m

' ). Rapid 267 

fluctuations in ! ' , via wind gusts, can significantly contribute to the overall stochastic 268 

forcing [Sura et al., 2006]. 269 

d) Enabling air-sea feedback by using a second stochastic equation for surface air 270 

temperature, which is thermodynamically coupled to the ocean via the air-sea 271 

temperature difference [Frankignoul, 1985; Barsugli and Battisti, 1998]. With coupling, 272 

the air temperature adjusts to the underlying SSTA reducing the thermal damping, which 273 

significantly enhances the decadal SST variability but reduces the surface flux variability 274 

(it approaches zero at long time scales) and is apparent when comparing AGCMs with 275 

specified SSTs to those coupled to mixed layer ocean models [Bladé, 1997; Bhatt et al., 276 

1998; Saravanan, 1998]. 277 
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The primary effect of these extensions to the Hasselmann model is to increase the SSTA 278 

variance at annual and longer time scales.   279 

 280 

4.2 Cloud-SST feedbacks 281 

Both the insolation and the amount of stratiform clouds are greatest over the North 282 

Pacific in summer. Increased clouds cool the ocean, while a colder ocean enhances the 283 

static stability, leading to more stratiform clouds that reduce Qsw [Norris and Leovy, 284 

1994; Weare, 1994; Klein et al., 1995;]. This positive feedback occurs over the central 285 

and western Pacific at ~40°N where there are strong gradients in both SST and cloud 286 

amount [Norris et al., 1998]. The positive SST-low cloud feedback increases the 287 

persistence of North Pacific SST anomalies during the warm season [Park et al., 2006].  288 

 289 

4.3  “The Reemergence Mechanism”  290 

Seasonal variations in h have the potential to influence the evolution of upper ocean 291 

thermal anomalies. Namias and Born [1970, 1974] were the first to note a tendency for 292 

midlatitude SST anomalies to recur from one winter to the next without persisting 293 

through the intervening summer. They speculated that temperature anomalies that form at 294 

the surface and spread throughout the deep winter mixed layer remain beneath the mixed 295 

layer when it shoals in spring. The thermal anomalies are then incorporated into the 296 

summer seasonal thermocline where they are insulated from surface fluxes that damp 297 

anomalies in the mixed layer.  When h deepens again in the following fall, the anomalies 298 

are re-entrained into the surface layer and influence the SST. Alexander and Deser [1995] 299 

termed this process the “reemergence mechanism” (shown schematically in Figure 3) and 300 
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it has been documented over large portions of the North Atlantic and North Pacific 301 

Oceans using subsurface temperature data and mixed layer model simulations [Alexander 302 

et al., 1999; 2001; Bhatt et al., 1998; Watanabe and Kimoto, 2000; Timlin et al., 2002; 303 

Hanawa and Sugimoto, 2004].  304 

The evolution of upper ocean temperatures in three North Pacific regions is shown by 305 

regressing the temperature anomalies as a function of month and depth on SST anomalies 306 

in April-May (Figure 7). The regressions depict how a 1°C SSTA in spring linearly 307 

evolves from the previous January through the following April. The regressions indicate 308 

the reemergence mechanism occurs in the east, central and west Pacific: the anomalies 309 

which extend through out the deep winter mixed layer are maintained beneath the surface 310 

in summer and then return to the surface in the following fall and winter. The regional 311 

differences in the timing and strength of the reemergence mechanism are partly due to 312 

variations in the seasonal cycle of h across the North Pacific. The maximum h, which 313 

tends to occur in March, increases from about 80 m along the west coast of North 314 

America, to 120 m in the central Pacific and 150-250 m in the west Pacific (Figure 4).  315 

Combining the Hasselmann model with one that includes the seasonal cycle of h 316 

significantly enhances the winter-to-winter autocorrelation of SST anomalies via the 317 

reemergence mechanism [Alexander and Penland, 1996; Deser et al., 2003]. The lag 318 

autocorrelation of North Pacific SSTA starting from March indicates a clear annual cycle 319 

with peaks in March of successive years, due to the reemergence mechanism, while the 320 

total heat content (including the temperature anomalies in the summer thermocline) 321 

appears to decay at a constant rate, as expected from the Hasselmann model that uses the 322 

winter h to calculate the damping rate. This indicates that the winter mixed layer depth 323 
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should be used when calculating the feedback parameter λ for studies of the year-to-year 324 

persistence of SST anomalies. 325 

 326 

4.4 Dynamic ocean process 327 

Ocean dynamics, including advection (Term III), allows for additional mechanisms 328 

that contribute to SST variability on interannual and decadal times. Since currents advect 329 

ocean temperature anomalies, the reemergence process can be non-local, i.e. SST 330 

anomalies created in one winter may return to the surface at a different location in the 331 

subsequent winter. Remote reemergence is pronounced in regions of strong currents such 332 

as the Gulf Stream [de Coëtlogon and Frankignoul, 2003] and Kuroshio Extension 333 

[Sugimoto and Hanawa, 2005]. In the latter, anomalies created near Japan propagate to 334 

the central Pacific by the following winter. 335 

Saravanan and McWilliams [1997, 1998] proposed the “advective resonance” 336 

hypothesis where a decadal SSTA peak can be generated based only on the spatial 337 

structure of atmospheric forcing and a constant ocean velocity. For interannual and 338 

longer periods extratropical atmospheric variability tends to be dominated by fixed 339 

spatial patterns that are white in time. Stochastic forcing by these large-scale patterns can 340 

lead to low frequency variability if the forcing has a multi-pole structure and the ocean 341 

advection traverses the centers of the poles. A simple model of such a system devised by 342 

Saravanan and McWilliams has two regimes, one where thermal damping dominates 343 

ocean advection and the other where advection dominates. In the former, the oceanic and 344 

atmospheric power spectra are slightly reddened, but do not show any preferred 345 

periodicities. While in the latter, the overall variance in the atmosphere and ocean 346 
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decreases, but a well defined periodicity corresponding to the timescale emerges given by 347 

the length scale of the atmospheric forcing divided by the ocean velocity. Wu and Liu 348 

[2003] found that advective resonance could generate decadal variability in the eastern 349 

North Pacific but the SST anomalies were initiated by Ekman transport rather than the net 350 

heat flux. 351 

The dynamic adjustment of upper-ocean gyre circulation primarily occurs via 352 

westward propagating Rossby waves forced by anomalous wind stress. The relevant 353 

equation for wind forced waves can be written as [see Dickinson, 1987; Gill, 1982]: 354 

  355 

 356 

!ht
!t

+ c
!ht
!x

=
1

"
0
f
#x$ % &ht   (5) 357 

 358 

where h
t
 is the depth of the thermocline, c is the speed of the 1st baroclinic mode Rossby 359 

wave, the constant ρ0 is the sea water density, f is the Coriolis parameter, !x"  is the 360 

wind stress curl which drives vertical motion, via Ekman pumping and !  is a damping 361 

coefficient. h
t
 anomalies are generally compensated by perturbations in the sea surface 362 

height (SSH, e.g. Gill 1982), which can be measured from satellite [e.g. Robinson, 2004]. 363 

Rossby waves generated by large-scale wind forcing are long and thus non-dispersive, 364 

i.e. their speeds are independent of wavelength. The Rossby waves propagate nearly due 365 

west along a latitude circle (Figure 8), where c decreases rapidly with latitude. The large-366 

scale Rossby wave response (Figure 8b) results from the integrated !x"  forcing, 367 

producing maximum SSH (ht) variability near the western boundary, while the full SSH 368 
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field includes small-scale structures associated with eddies in the KE region (Figure 8a). 369 

The dominant time scale of the large-scale response is set by the basin width, the spatial 370 

scale and location (relative to the western edge) of the atmospheric forcing, and the 371 

Rossby wave speed. At the latitude of the Kuroshio Extension (35ºN) c is ~2.5 cm s−1. 372 

For a basin the size of the Pacific, the adjustment timescale is on the order of ~5 (10) 373 

years if the Rossby wave was initiated in the central (far eastern) Pacific. 374 

The Hasselman model can also be used to understand the dynamical ocean response 375 

to wind forcing. Rossby waves excited by stochastic !x" forcing that is zonally uniform 376 

produces a h
t
spectrum that increases with period but then reaches constant amplitude at 377 

low frequencies [Frankignoul et al., 1997]. When the forcing has a more complex 378 

structure, such as sinusoidal waves in the zonal direction, decadal peaks can occur in the 379 

spectra due to resonance with the basin-scale Rossby waves [Jin, 1997], which is 380 

equivalent to the advective resonance mechanism but where the anomaly pattern 381 

propagates via Rossby waves rather than by the mean currents. Decadal peaks may also 382 

result from the reduction in Rossby wave speed as the latitude increases: wind forcing at 383 

in the central Pacific creates westward Rossby waves that result in h
t
 anomalies of 384 

opposite sign on either side of the Kuroshio on ~10 year time scales [Qiu, 2003].  The 385 

gradient of ht influences the strength of the jet via geostrophic adjustment. 386 

The gyre adjustment process impacts SSTs through changes in thermocline depth and 387 

the currents. Given the westward deepening of the mixed layer across the basin between 388 

30°-50°N in winter (Figure 4), fluctuations in the upper thermocline are well below h in 389 

the central Pacific but close to the base of the mixed layer in the western Pacific. Thus, 390 

when Rossby waves propagate into the KE region in winter the associated temperature 391 
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anomalies can then be mixed to the surface via local turbulence. Schneider and Miller 392 

[2001] were thereby able to predict winter SSTA in the KE region several years in 393 

advance using the Rossby wave model (Eq. 5), forced with the observed !x" , plus a 394 

local linear regression between ht and SST in the KE region. Anomalies in ht and SST are 395 

relatively independent in summer and over most of the North Pacific in the KE region in 396 

all seasons.  397 

Once the ht anomalies propagate into the west Pacific, the position and strength of the 398 

KE changes [e.g. Qiu, 2000; Kelly, 2004; Qiu and Chen, 2005], which also impacts SSTs 399 

along ~40°N due to anomalous geostrophic heat transport [Seager et al., 2001; Schneider 400 

et al., 2002, Dawe and Thompson 2007; and Kwon and Deser, 2007; Qiu et al., 2007]. 401 

Satellite altimetry data and high resolution ocean models indicate that the large scale flow 402 

resulting from the arrival of Rossby waves affect the strength of the front and eddy 403 

activity in the KE region [Qiu and Chen, 2005; Taguchi et al., 2005; 2007], where the 404 

resulting ageostrophic currents influence SSTA [Dawe and Thompson, 2007].  405 

 406 

4.5 Midlatitude air-sea interaction 407 

While atmospheric forcing was crucial in generating low-frequency variability in the 408 

aforementioned studies, they did not require an atmospheric response to the developing 409 

ocean anomalies. Coupled feedbacks could enhance or give rise to new midlatitude 410 

modes of decadal variability. Based on analyses of a coupled atmosphere ocean GCM, 411 

Latif and Barnett [1994, 1996] proposed a feedback loop between the strength of the 412 

Aleutian Low and the subtropical ocean gyre circulation to account for the presence of 413 

decadal oscillations. They argued that an intensification of the Aleutian Low would 414 
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strengthen the subtropical gyre after a delay associated with the Rossby wave adjustment 415 

process. An anomalously strong subtropical gyre transports more warm water into the 416 

Kuroshio Extension, leading to positive SST anomalies in the western and central North 417 

Pacific. In their coupled model experiment and in supplementary AGCM simulations 418 

with prescribed SSTA, the atmosphere was very sensitive to SST variations in the KE 419 

region, where a strong anomalous high developed over the central Pacific in response to a 420 

positive SST anomalies in the KE. The circulation around the high advected warm moist 421 

air-over the positive SSTA, which maintained the SST anomalies but reduced the 422 

strength of the Aleutian Low, which subsequently weakened the subtropical gyre, 423 

switching the phase of the oscillation ~10 years later.  424 

While many aspects of the Latif and Barnett hypothesis occur in nature, such as the 425 

Rossby wave adjustment to !x"  anomalies associated with the strength of the Aleutian 426 

low, some are not consistent with data and ocean model simulations driven by observed 427 

atmospheric conditions. In particular, when the Aleutian Low strengthens it also shifts 428 

southward, as a result, the gyre circulation shifts equatorward and the SST anomalies 429 

subsequently cool rather than warm in the KE region [Figure 9; Deser et al., 1999, Miller 430 

and Schneider, 2001; Seager et al., 2001] as discussed further in section 5.2.3. In 431 

addition, rather than a positive thermal air-sea feedback, surface heat fluxes damps SST 432 

anomalies in the KE region both in observations and ocean model hindcasts [Seager et 433 

al., 2001; Tanimoto et al., 2003; Kelly, 2004]. Finally, the atmospheric response in the 434 

AGCM simulations conducted by Latif and Barnett were much larger than in nearly all 435 

other AGCM experiments [see Kushnir et al., 2002]. 436 
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 While the original Latif and Barnett mechanism may not be fully realized, 437 

midlatitude ocean-to-atmosphere feedbacks still appear to influence decadal variability. 438 

Observations, theoretical models and coupled GCMs suggest there is positive air-sea 439 

feedback in the North Pacific [Weng and Neelin, 1999; Schneider et al., 2002; Wu et al., 440 

2005; Kwon and Deser, 2007; Frankignoul and Sennéchael, 2007; Qiu et al., 2007]. As 441 

in the original Latif and Barnett hypothesis wind stress curl anomalies in the central 442 

Pacific generates ocean Rossby waves that lead to adjustment of the ocean gyres ~5 years 443 

later (Figure 9a), but in contrast to Latif and Barmett, the SST anomalies in the Kuroshio 444 

region are maintained by geostrophic currents due to a change in the position of the gyre 445 

(Figure 10) and to some extent the Ekman transport, rather than surface fluxes. When the 446 

gyres shifts north, KE SSTs increase and the upward directed latent heat fluxes lead to 447 

enhanced precipitation over the KE region and, in some model experiments, a broader 448 

atmospheric response that includes !x"  anomalies over the central North Pacific that are 449 

similar in structure but opposite in sign and somewhat weaker than the curl anomalies 450 

reversing the sign of the oscillation forcing pattern (Figure 9b). While this coupled 451 

feedback loop explains a small amount of the overall SST variance, it produces a modest 452 

spectral peak above the red noise background on decadal time scales [Kwon and Deser, 453 

2007; Qiu et al., 2007].  454 

 455 

4.6 Tropical-extratropical interactions 456 

Variability in the North Pacific may not only be generated by extratropical processes 457 

but also arise due to fluctuations originating in the tropics that are communicated to 458 
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midlatitudes by the atmosphere and/or ocean. Furthermore, two-way interactions between 459 

the tropical and North Pacific may impact low-frequency variability in both domains. 460 

 461 

4.6.1 “The Atmospheric Bridge” (ENSO Teleconnections) 462 

ENSO-driven atmospheric teleconnections [Trenberth et al., 1998; Liu and 463 

Alexander, 2007, chapter 7] alter the near-surface air temperature, humidity, wind and 464 

clouds far from the equatorial Pacific. The resulting variations in the surface heat, 465 

momentum and fresh water fluxes cause changes in SST, h, salinity, and ocean currents.  466 

Thus, the atmosphere acts like a bridge spanning from the equatorial Pacific to the North 467 

Pacific, South Pacific, the North Atlantic and Indian Oceans [e.g. Alexander, 1990, 468 

1992a; Lau and Nath, 1994, 1996, 2001; Klein et al., 1999; Alexander et al., 2002]. The 469 

SST anomalies that develop in response to this “atmospheric bridge” may feed back on 470 

the original atmospheric response to ENSO.  471 

When El Niño events peak in boreal winter, enhanced cyclonic circulation around the 472 

deepened Aleutian low (Plate 1a) results in anomalous northwesterly winds that advect 473 

relatively cold dry air over the western/central North Pacific, anomalous southerly winds 474 

that advect warm moist air along the west coast of North America and enhanced surface 475 

westerlies over the central North Pacific. The resulting anomalous surface heat fluxes and 476 

Ekman transport create negative SSTA between 30ºN-50ºN west of ~150ºW and positive 477 

SSTA along the west coast of North America (Plate 1a; Alexander et al., 2002; Alexander 478 

and Scott, 2008]. In the central North Pacific, the stronger wind stirring and negative 479 

buoyancy forcing due to surface cooling increases the h through the winter and some of 480 
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the anomalously cold water returns to the surface in the following fall/winter via the 481 

reemergence mechanism [Alexander et al., 2002].   482 

 Studies using AGCM-mixed layer ocean model simulations have confirmed the 483 

basic bridge hypothesis for forcing North Pacific SST anomalies, but have reached 484 

different conclusion on the impact of these anomalies on the atmosphere [Alexander, 485 

1992b; Bladé, 1999; Lau and Nath, 1996, 2001]. More recent model experiments suggest 486 

that the oceanic feedback on the extratropical response to ENSO is complex, but of 487 

modest amplitude, i.e. atmosphere-ocean coupling outside of the tropical Pacific slightly 488 

modifies the extratropical atmospheric circulation anomalies but these modifications 489 

depend on the seasonal cycle and air-sea interactions both within and beyond the North 490 

Pacific Ocean [Alexander et al., 2002; Alexander and Scott, 2008]. 491 

 Most studies of the atmospheric bridge have focused on boreal winter since 492 

ENSO and the associated atmospheric circulation anomalies peak at this time. However, 493 

significant bridge-related changes in the climate system also occur in other seasons.  Over 494 

the western North Pacific, the southward displacement of the jet stream and storm track 495 

in the summer prior to when ENSO peaks changes the solar radiation and latent heat flux 496 

at the surface, which results in anomalous cooling and deepening of the oceanic mixed 497 

layer at ~40ºN [Alexander et al., 2004; Park and Leovy, 2004]. The strong surface flux 498 

forcing in conjunction with the relatively thin mixed layer in summer leads to the rapid 499 

formation of large-amplitude SST anomalies in the Kuroshio Extension (Plate 1b).  500 

While the atmospheric bridge primarily extends from the tropics to the extratropics, 501 

variability originating in the North Pacific may also influence the tropical Pacific. Barnett 502 

et al. [1999] and Pierce et al. [2000] proposed that the atmospheric response to slowly 503 
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varying SST anomalies in the Kuroshio Extension region, extends into the tropics, 504 

thereby affecting the trade winds and decadal variability in the ENSO region. Vimont et 505 

al. [2001, 2003] found that the extratropical atmosphere can generate tropical variability 506 

via the “seasonal footprinting mechanism”. Large fluctuations in the North Pacific 507 

Oscillation, an intrinsic mode of atmospheric variability, impart an SST footprint onto the 508 

ocean during winter via changes in the surface heat fluxes, which persists through 509 

summer in the subtropics, and impacts the atmospheric circulation including zonal wind 510 

stress anomalies that extend onto and south of the equator. These wind stress anomalies 511 

are an important element of the stochastic forcing of interannual and decadal ENSO 512 

variability [Vimont et al., 2003; Alexander et al., 2008].  513 

 514 

4.6.2 Ocean teleconnections 515 

The equatorial thermocline variability associated with ENSO excites Kelvin and other 516 

coastally trapped ocean waves, which propagate poleward along the eastern Pacific 517 

boundary in both hemispheres, generating substantial sea level variability [Enfield and 518 

Allen, 1980; Chelton and Davis, 1982; Clarke and van Gorder, 1994]. However, these 519 

waves impact the ocean only within ~50 km of shore north of 15°N [Gill, 1982]. Energy 520 

from the coastal waves can also be refracted as long Rossby waves that propagate 521 

westward across the extratropical Pacific [Jacobs et al., 1994; Meyers et al., 1996]. 522 

However, wind forcing rather than the eastern boundary waves appears to be the 523 

dominant source of Rossby waves across much of the North Pacific [Miller et al., 1997; 524 

Chelton and Schlax, 1996; Fu and Qiu, 2002]. 525 

Gu and Philander [1997] proposed a mechanism for decadal variability that relies on 526 
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the subduction of surface temperature anomalies in the North Pacific and their subsequent 527 

southward propagation in the lower branch of the STC. Upon reaching the equator the 528 

thermal anomalies upwell to the surface and amplify via interactions between the zonal 529 

wind, SST gradient and upwelling, known as the “Bjerknes feedback” (e.g. see Neelin et 530 

al. 1998) and subsequently influence the North Pacific via the atmospheric bridge.  If 531 

warm water is subducted, the subsequent positive anomalies on the equator will act to 532 

strengthen the Aleutian Low, which creates cold anomalies in the central North Pacific 533 

(Plate 1). This describes one half of the oscillation, the period of which is controlled by 534 

the time it takes the water parcels to travel from the surface in the extratropics to the 535 

equator. While observations show evidence of thermal anomalies subducting in the main 536 

thermocline in the central North Pacific [Deser et al., 1996; Schneider et al., 1999], these 537 

anomalies decay away from the subduction region, and the thermocline variability found 538 

equatorward of 18° appears to be primarily associated with tropical wind forcing 539 

[Schneider et al., 1999; Capotondi et al., 2003]. SSTs in the equatorial Pacific, however, 540 

may still be influenced by subduction and transport from the South Pacific [Luo and 541 

Yamagata, 2001]. 542 

An alternate subduction-related hypothesis is that changes in the subtropical winds 543 

alter the speed of the STC, thus changing the rate at which relatively cold water from the 544 

surface layer in the extratropics is transported southward and then upwells at the equator. 545 

Using an atmosphere-ocean model of intermediate complexity, Kleeman et al. [1999] 546 

found that decadal variations of tropical SSTs could be induced by changes in the 547 

subtropical winds, while the observational analyses of McPhaden and Zhang [2002] 548 

indicated that slowing of the STCs in both hemispheres after 1970 relative to the previous 549 
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two decades, reduced upwelling along the equator and resulted in substantially warmer 550 

SSTs in the central equatorial Pacific.  551 

 552 

4.6.3 Two-way connections 553 

Liu et al. [2002] and Wu et al. [2003] performed sensitivity experiments using “model 554 

surgery” in which ocean-atmosphere interaction can be turned on and off in different 555 

regions. These experiments suggest that decadal variability arises in the tropical and 556 

North Pacific, via independent mechanisms but variability in both basins can be enhanced 557 

by tropical-extratropical interactions. For example, tropical Pacific decadal SST variance 558 

is almost doubled when extratropical ocean-atmosphere interaction and oceanic 559 

teleconnections are enabled. Observational [Newman, 2007] and modeling studies 560 

[Solomon et al., 2003, 2008] support the concept of two-way coupling where variability 561 

in the North Pacific influences tropical low-frequency variability and vice-versa.  562 

 563 

5)  THE PACIFIC DECADAL OSCILLATION 564 

5.1 pattern and temporal variability 565 

The leading pattern of North Pacific monthly SST variability, as identified by 566 

empirical orthogonal function (EOF) analysis and the corresponding principal component 567 

(PC 1), the time series of the amplitude and phase of EOF 1, are shown in Figure 11. The 568 

time series (after removing the global mean temperature) has been termed the Pacific 569 

Decadal Oscillation (PDO) by Mantua et al. (1997) due to its low frequency fluctuations. 570 

The PDO underwent rapid transitions between relatively stable states or “regime 571 

changes” around 1925, 1947 and 1976, although interannual variability is also apparent in 572 
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the PDO time series. In the North Pacific, the PDO pattern has anomalies of one sign in 573 

the central and western North Pacific between approximately 25°-45°N that are ringed by 574 

anomalies of the opposite sign.  However, the associated SST anomalies extend over the 575 

entire basin and are symmetric about the equator [Zhang et al., 1997; Garreaud and 576 

Battisti, 1999], leading some to term the phenomenon the Interdecadal Pacific Oscillation 577 

(IPO; Power et al., 1999; Folland et al., 2002].   578 

The decadal SST transitions were accompanied by widespread changes in the 579 

atmosphere, ocean and marine ecosystems [e.g. Miller et al., 1994; Trenberth and 580 

Hurrell, 1994; Benson and Trites, 2002; Deser et al., 2004]. For example, Mantua et al. 581 

[1997] found that timing of changes in the PDO closely corresponded to those in salmon 582 

production along the west coast of North America. The positive phase of the PDO, with 583 

cold water in the central Pacific and warm water along the coast of North America is 584 

accompanied by a deeper Aleutian low, with negative SLP anomalies over much of the 585 

North Pacific (Figure 11), warm surface air temperature over western North America and 586 

enhanced precipitation over Alaska and the southern US and reduced precipitation across 587 

the northern US/southern Canada [Mantua et al., 1997; Deser et al., 2004].  588 

 589 

5.2 Mechanisms for the PDO 590 

The PDO could be a critical factor in long-range forecasts given its long time scale 591 

and connection to many important climatic and biological variables. However, this 592 

depends on whether the mechanism(s) underlying the PDO is (are) predictable and the 593 

relationship between PDO SSTA and the associated large-scale atmospheric circulation, 594 

i.e. is the PDO i) driving, ii) responding to or iii) coupled with the later? We will expand 595 
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on the processes underlying midlatitude SST variability discussed in section 4 as 596 

potential mechanisms for the PDO. 597 

  598 

5.2.1 Fluctuations in the Aleutian Low (large-scale stochastic forcing) 599 

The Hasselmann model for SSTs at a given location can be extended to understand 600 

basin-wide SST anomaly patterns. Frankignoul and Reynolds [1983] found that white 601 

noise forcing associated with large-scale atmospheric fluctuations could explain much of 602 

the variability over the entire North Pacific, while Cayan [1992b] and Iwasaka and 603 

Wallace [1995] found that interannual variability in the surface fluxes and SSTs are 604 

closely linked to the dominant patterns of atmospheric circulation over the North Pacific 605 

and North Atlantic Oceans. We explore SLP/Qnet/SST relationships using an AGCM 606 

coupled to a variable depth ocean mixed layer model (MLM), with no ocean currents and 607 

hence no ENSO variability or ocean gyre dynamics. As in nature, the leading pattern of 608 

SLP variability over the North Pacific is associated with fluctuations in the Aleutian Low 609 

(Figure 12a). The near-surface circulation around a stronger low, results in enhanced 610 

wind speeds and reduced air temperature and humidity along ~35°N, which cools the 611 

underlying ocean via the surface heat fluxes, while the northward advection of warm 612 

moist air heats the ocean near North America. The structure of the SLP-related surface 613 

flux anomalies (Figure 12b) is very similar to the dominant surface flux and SST patterns 614 

(Figure 12c,d). Given that the model has no ocean currents and similar SLP and flux 615 

patterns are found in AGCM simulations with climatological SSTs as boundary 616 

conditions [Alexander and Scott, 1997], indicates that fluctuations in the Aleutian Low 617 

can drive PDO-like SST anomalies via the surface flux field.  618 
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The temporal characteristics of the PDO are also consistent with the Hasselman 619 

model, i.e. it exhibits a red noise spectrum without significant spectral peaks other than at 620 

the annual period (Figure 13). Pierce [2001] generated 100-year synthetic time series 621 

using a random number generator and the same lag one autocorrelation coefficient as the 622 

observed PDO. The synthetic time series exhibited similar low-frequency variability as 623 

the observed PDO with strings of years of the same sign separated by abrupt “regime 624 

shifts” and exhibit “significant” (at the 95% level) spectral peaks but at different periods. 625 

These findings suggest caution in attributing physical meaning to regime shifts and 626 

spectral peaks even in century long data sets. 627 

 628 

5.2.2 Teleconnections from the tropics 629 

Mantua et al. [1997] noted that the PDO had only a modest correlation with ENSO 630 

and that the North Pacific variability was of greater amplitude and lower frequency than 631 

that in the tropical Pacific. However, the atmospheric bridge to the North Pacific is 632 

complex and is a function of season, lag and location [Newman et al., 2003] and also 633 

depends on the ENSO index, data set, etc. [Alexander et al., 2008]. Furthermore, the 634 

ENSO-related North Pacific SST anomaly pattern during winter (Plate 1a) clearly 635 

resembles the PDO, while the summer ENSO signal (Plate 1b) also projects on the PDO 636 

pattern, particularly in the western North Pacific.  So, to what extent does ENSO and 637 

tropical SSTs in general impact the PDO? 638 

Zhang et al. [1997] utilized several analysis techniques to separate interannual ENSO 639 

variability from a residual containing the remaining (> 7 yr) "interdecadal" variability. 640 

The SSTA pattern based on low-pass filtered data is similar to the unfiltered ENSO 641 
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pattern, except it is broader in scale in the eastern equatorial Pacific and has enhanced 642 

magnitude in the North Pacific relative to the tropics. The extratropical component 643 

closely resembles the PDO. Other statistical methods of decomposing the data indicate 644 

that at least a portion of the decadal variability in the PDO region is associated with 645 

anomalies in the tropical Pacific [e.g. Nakamura et al., 1997; Mestas Nuñez and Enfield 646 

1999; Alexander et al., 2008]. 647 

While the broad structure of the 1st EOF of SSTA in observations (Figure 11a) and 648 

the AGCM-MLM (Figure 12d) are similar, the anomalies extend along ~40°N in nature 649 

but slope southwestward from the central Pacific toward the south China Sea in the 650 

model. This bias could be due to several factors, including the absence of ENSO/the 651 

atmospheric bridge in the original AGCM-MLM simulations. In AGCM-MLM-TP_OBS 652 

experiments, in which the MLM is coupled to the AGCM except in the tropical Pacific 653 

where observed SSTs are prescribed for the years 1950-1999, the dominant pattern of 654 

North Pacific SSTAs closely resembles the observed PDO [see Fig. 5 in Alexander et al., 655 

2002].  656 

The observed difference between SSTs averaged over periods 1977-1988 and 1970-657 

1976 during winter includes warm ENSO-like conditions in the tropical Pacific and the 658 

positive phase of the PDO in the North Pacific (Figure 14a). A comparable plot based on 659 

an ensemble average of 16 AGCM-MLM-TP_OBS simulations has a similar pattern in 660 

the North Pacific (Figure 14b), confirming that the atmospheric bridge can contribute to 661 

low-frequency variability in the PDO, although the amplitude of the North Pacific 662 

anomalies in the MLM are ~1/3 of their observed counterparts. While there is a wide 663 

range in epoch differences between ensemble members (not shown), this estimate of 664 
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ENSO’s impact on low-frequency PDO variability is consistent with that of Schneider 665 

and Cornuelle [2005], discussed later in this section. 666 

The influence of the tropics on decadal variability in the North Pacific variability via 667 

the atmospheric bridge may occur via the teleconnection of decadal signals originating in 668 

the ENSO region [Trenberth, 1990; Graham et al., 1994; Deser and Phillips, 2006], 669 

decadal forcing from other portions of the tropical Pacific and Indian Oceans [Deser et 670 

al., 2004; Newman, 2007] and/or by ENSO-related forcing on interannual time scales 671 

which is integrated, or reddened by ocean processes in the North Pacific, including the 672 

reemergence mechanism [Newman et al., 2003; Schneider and Cornuelle, 2005]. 673 

Alexander et al. [1999, 2001] showed that the PDO pattern could recur in consecutive 674 

winters via the reemergence mechanism. 675 

   676 

5.2.3) Midlatitude ocean dynamics and coupled variability 677 

The role of ocean dynamics in PDO variability has been investigated through the 678 

change in ocean circulation that occurred in 1976-1977, when the ocean rapidly 679 

transitioned from the negative to positive phase of the oscillation (Figure 11c). The 680 

strengthening and southward displacement of the Aleutian low beginning in the winter of 681 

1976 and in the decade that followed, cooled the central Pacific by enhanced Ekman 682 

transport, vertical mixing and upward surface heat flux [Miller et al., 1994]. This cooling 683 

projected strongly on the PDO in the center of the basin. In addition, the maximum 684 

westerly winds intensified and shifted from about 40°N to 35°N and hence !x"  and 685 

Ekman pumping shifted southward, with anomalous downward (upward) values south 686 

(north) of 35°N (Figure 15a,b). Following the Rossby waves adjustment process to the 687 
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wind forcing (see section 4.4), the thermocline deepened (shoaled) south (north) of the 688 

mean KE axis at ~35°N and the gyres strengthened and shifted southwards over a ~5 yr 689 

period (Figure 15c,d). Geostrophic advection associated with southward gyre position, 690 

strongly cooled the ocean along 40°N. The SST anomalies in the KE region, also project 691 

onto the PDO, helping to maintain the positive phase of the PDO through the 1980s.  692 

The 20-30 year persistence of anomalies in the PDO record and ~15-25 yr period of 693 

PDO variability in paleoclimate reconstructions [Biondi et al., 2001; Gedalof, 2002] and 694 

in some coupled GCM studies, has lead some to suggest that the PDO is due to positive 695 

atmosphere-ocean feedbacks necessary to sustain decadal oscillations. While the North 696 

Pacific Ocean appears to have the necessary dynamics to generate low frequency 697 

variability, it is unclear whether the atmospheric response to the associated SST 698 

anomalies has the correct spatial pattern, phase and amplitude for decadal oscillations. On 699 

one hand, recent coupled GCM experiments [Kwon and Deser, 2007] and observationally 700 

derived heuristic models [Qiu et al., 2007] suggest that the atmospheric response to SST 701 

anomalies in the Kuroshio extension region, while modest, is sufficiently strong to 702 

enhance variability at decadal periods. On the other hand, the wind stress curl pattern 703 

diagnosed as the response to the KE SST anomalies by Kwon and Deser [2007], was of 704 

one sign across the Pacific at ~40°N, while Qiu et al. [2007] found that it switched signs 705 

in the center of the basin. There are also conflicting results from AGCM studies with 706 

either specified SST anomalies [e.g. Peng et al., 1997; Peng and Whitaker, 1999] or 707 

where the ocean component is a slab mixed layer and an anomalous heat source, 708 

representing geostrophic heat flux convergence, is added in the KE region [Yulaeva et al., 709 

2001; Liu and Wu, 2004; Kwon and Deser, 2007]. Some models exhibit a baroclinic 710 
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response with a surface low that decrease with height downstream over the central 711 

Pacific, while others have an equivalent barotropic response with a surface high that 712 

increases with height over the central Pacific. The former is in direct response to the low-713 

level heating while the latter is stronger and driven by changes in the storm track. In 714 

addition, most AGCM studies have found that the response to extratropical SSTs is 715 

relatively small compared to internal atmospheric variability [Kushnir et al., 2002], 716 

although the current generation of coupled GCMs may not sufficiently resolve all of the 717 

oceanic as well as atmospheric processes that could contribute to the PDO.  718 

 719 

5.2.4 The PDO: a multi-process phenomena? 720 

How can we reconcile these conflicting findings on the mechanism for the PDO? 721 

Several recent studies have used statistical analyses to reconstruct the annually averaged  722 

(July-June) PDO and determine the processes that underlie its dynamics. Newman et al. 723 

[2003] found that the PDO is well modeled as the sum of atmospheric forcing represented 724 

by white noise, forcing due to ENSO, and memory of SST anomalies in the previous year 725 

via the reemergence mechanism. Expanding on this concept, Schneider and Cornuelle 726 

[2005] found that the annually averaged PDO could be reconstructed based on an AR1 727 

model and forcing associated with stochastic variability in the Aleutian low, ENSO 728 

teleconnections, and shifts in the North Pacific Ocean gyres; vertical mixing of 729 

temperature anomalies associated with wind-driven Rossby waves had little impact on 730 

the PDO (Figure 16a). On interannual time scales, random Aleutian Low fluctuations and 731 

ENSO teleconnections were about equally important in determining the PDO variability 732 

with negligible contributions from ocean currents, while on decadal timescales, stochastic 733 
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forcing, ENSO and changes in the gyre circulations, each contributed approximately 1/3 734 

of the PDO variance (Figure 16b). A key implication of these analyses is that, unlike 735 

ENSO, the PDO is likely not a single physical mode but rather the sum of several 736 

phenomena.  Furthermore, random combinations of these and perhaps other processes 737 

can give rise to apparent “regime shifts” in the PDO that are not predictable beyond about 738 

two years [Barlow et al., 2001; Schenider and Cornuelle, 2005; Alexander et al., 2007; 739 

Newman, 2007]. 740 

 741 

6) BEYOND THE PDO 742 

The PDO is only one measure of variability in the North Pacific, it is possible that 743 

other regions and/or modes of variability may primarily result from North Pacific 744 

atmosphere-ocean dynamics. For example, Nakamura et al. [1997] first time filtered the 745 

SST anomalies over the Pacific and then computed the first two EOFs for time scales 746 

greater than 7 years. The first EOF shows strong variability along 40°-45°N in the west-747 

central Pacific along the subarctic front and little signal in the tropics, while the second 748 

EOF has a strong loading in the tropical Pacific and along the subtropical front in the 749 

central North Pacific. The first three rotated EOFs (where the patterns are no longer 750 

required to be orthogonal, e.g. see Richman, 1986; von Storch and Zweirs, 1999] on 751 

unfiltered monthly SST anomalies over the Pacific basin are associated with ENSO, the 752 

PDO and a North Pacific mode that exhibits pronounced decadal variability (Figure 17, 753 

Barlow et al., 2001). The latter is similar to the leading pattern of variability identified by 754 

Nakamura et al. [1997], although its maximum amplitude is located further east. In 755 

addition, variables such as salinity, thermocline depth, and SSH may provide a more 756 
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direct estimate of dynamically driven ocean variability. Di Lorenzo et al. [2007] recently 757 

identified the North Pacific Gyre Oscillation (NPGO) as the dominant mode of SSH 758 

variability that has a dipole structure associated with out-of-phase changes in strength of 759 

the subtropical and subpolar gyres in the eastern half of the basin. The NPGO also 760 

exhibits decadal variability. The mechanism(s) behind these extratropical decadal 761 

variations and the extent to which they are influenced by global warming requires further 762 

study.  763 

Many of the processes that operate in the North Pacific are also found in the North 764 

Atlantic and the Southern Oceans where they influence the large-scale SST anomaly 765 

patterns. Heat flux forcing associated with fluctuations in the North Atlantic Oscillation 766 

(NAO, with opposing SLP anomaly centers over the subtropics and Icelandic) create an 767 

SST tripole pattern with anomalies of one sign in midlatitudes, flanked by anomalies of 768 

the opposite sign in the subtropics and subpolar regions [e.g., Cayan, 1992b; Seager et 769 

al., 2000]. Oceanic Rossby waves, gyre adjustments and wind driven currents also play 770 

an important role in decadal variability of the Gulf Stream [e.g. Frankignoul et al., 1997; 771 

Curry and McCartney, 2004; de Coëtlogon et al., 2006], although the direct connection 772 

between Rossby waves and the Gulf Stream is less apparent than in the KE region.  The 773 

atmospheric bridge also influences the North Atlantic particularly in the subtropics, while 774 

there is also a NAO-like response in mid and high latitudes that is stronger during La 775 

Niña than El Niño events [e.g. Pozo-Vázquez et al., 2001; Alexander et al., 2002; 776 

Alexander and Scott, 2008]. Modeling studies also indicate that the atmospheric response 777 

to tropical Atlantic SST anomalies influences air-sea interaction and SST variability in 778 

the North Atlantic [Drevillon et al., 2003; Peng et al., 2005, 2006]. In the Southern 779 
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Hemisphere, the Southern Annular mode (SAM, with nearly zonally symmetric SLP 780 

anomalies with opposing centers between 30°S-50°S and 50°-90°S), and ENSO 781 

teleconnections drive SST anomalies in mid and high latitudes [Ciasto and Thompson, 782 

2008].  In contrast to the Pacific, the meridional overturning circulation (MOC) and 783 

interactions with sea ice, have a much greater impact on low-frequency SST variability in 784 

the North Atlantic and parts of the Southern Ocean compared to the North Pacific.  785 
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Figure Captions 1179 

Figure 1. a) Annual mean and b) standard deviation of SST for the years 1985-2007 1180 
obtained from the NOAA high resolution (0.25° lat x lon) SST data set [Reynolds et al., 1181 
2007]. 1182 
 1183 
Figure 2. Annual average ocean currents (m s-1) averaged over the upper 500 m from the 1184 
Simple Ocean Data Assimilation (SODA, Carton and Giese, 2008) for the years 1958-1185 
2001. The current strength is indicated by the three tone gray scale with maximum values 1186 
of ~0.7 m sec-1 in the Kuroshio.  1187 
 1188 
Figure 3.  The mean ocean temperature (°C) and mixed layer depth (h) over the course of 1189 
the seasonal cycle in a 5°x5° box centered on 50°N, 145°W (where Weathership P was 1190 
located from the 1950s – 1980s) in the northeast Pacific. The temperature values are from 1191 
SODA and the h values from Monterey and Levitus [1997]. Arrows denote the 1192 
reemergence mechanism where surface heat flux anomalies create temperature anomalies 1193 
over the deep winter mixed layer; the anomalies are then sequestered in the summer 1194 
seasonal thermocline and return to the surface in the following winter. 1195 
 1196 
Figure 4.  The long-term mean mixed layer depth (m) during (a) Mar and (b) Sep using a 1197 
density difference between the surface and base of the mixed layer of 0.125 kg m-3. Data 1198 
obtained from Monterey and Levitus [1997]. 1199 
 1200 
Figure 5. The Pacific subtropical cell (STC): (a) Meridional streamfunction computed 1201 
from the NCAR OGCM driven by observed atmospheric surface conditions. The flow is 1202 
clockwise (counter clockwise) in the Northern (Southern Hemisphere). Contour interval 1203 
is 5 Sv. (b) The circulation with in the subsurface portion of the STC and subtropical 1204 
gyre. Arrows indicate the averaged upper-ocean velocities, integrated from the base of 1205 
the surface Ekman layer (50 m depth) to the depth of the 25 σθ potential density surface; 1206 
contours denote the mean potential vorticity (PV) on the 25 σθ surface, which outcrops 1207 
between 30°-40°N and the strongest equatorward flow in the subtropics. The currents 1208 
tend to conserve PV, thus the large values along 10°N, act as a partial barrier, and the 1209 
water subducted in the north Pacific takes a convoluted to reach the equator. Adapted 1210 
from Capotondi et al. [2005]. 1211 
 1212 
Figure 6. Observed SST variance spectra (black line) in a 5°x5° box centered on 50°N, 1213 
145°W using 134 years of month anomalies from the HadSST data set [Rayner et al., 1214 
2006].  The gray and white cures are based on a AR(1) model, fit to the SST data: 1215 
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, σ is the standard 1216 
deviation and ! is a random number drawn from a Gaussian distribution. The gray 1217 
shading represents the 5th and 95th percentile bounds for 1200 134-yr simulated spectra; 1218 
the white line is the average of simulated spectra and overlays the theoretical spectra on 1219 
an AR(1) model, the discrete form of Equation 4. 1220 
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 1221 
 1222 
Figure 7. The reemergence mechanism as indicated by lead–lag regressions [°C (1°C)−1] 1223 
between temperature anomalies at 5 m in Apr–May, and temperature anomalies from the 1224 
previous Jan through the following Apr in the (b) east, (c) central, and (d) west Pacific 1225 
regions  [shown in (a)]. The contour interval is 0.1 and values greater than (b) 0.55, (c) 1226 
0.7, and (d) 0.75 are shaded to highlight the reemergence mechanism. Computed using 1227 
the NCEP ocean assimilation analyses [Ji et al., 1995]. Adapted from Alexander et al. 1228 
[1999]. 1229 
 1230 
Figure 8. Sea surface height (SSH) anomalies along the zonal band of 32°–34°N from (a) 1231 
the satellite altimeter data and (b) the wind-forced baroclinic Rossby wave model; see Eq. 1232 
(5).  Adapted from Qiu et al. [2007]. 1233 
 1234 
Figure 9. Atmospheric a) forcing and b) response to SST anomalies in the Kuroshio 1235 
extension region. Regression of wind stress curl anomalies on the winter normalized SST 1236 
anomalies in the KE region (35°–45°N, 140°E–180°). (a) Annual mean wind stress curl 1237 
leading SST Index by 4 yr; both variables are smoothed with a 10-yr low-pass filter. (b) 1238 
Annual mean wind stress curl lagging the SST index by 1 yr based on unfiltered data. 1239 
The unfiltered regression pattern is further scaled by the ratio of the standard deviation of 1240 
10-yr low-pass-filtered SST index to that of unfiltered SST index. (Contour intervals are 1241 
0.2 × 10−8 N m−3. Negative values are dashed and shading indicates regressions 1242 
significant at 99%. Results are from a long coupled NCAR GCM simulation. Adapted 1243 
from Kwon and Deser [2007]. 1244 
 1245 
Figure 10. Relationship between temperature anomalies in the Kuroshio Extension and 1246 
changes in the ocean gyres. Simultaneous regression of DJFM subsurface zonal current 1247 
velocity along 150°E on the SST anomalies averaged over the KE region. Both variables 1248 
have been low-pass filtered to retain periods longer than 10 yr. Contour interval is 0.2 cm 1249 
s−1 °C−1, and the shading indicates regressions significant at 99%. Solid (dashed) contours 1250 
denote eastward (westward) velocity. Thin contours with boxed labels indicate the 1251 
climatological winter (DJFM) mean zonal velocity fields. Contour interval for the mean 1252 
zonal velocity is 2 cm s-1 Results are from a long coupled NCAR GCM simulation [Kwon 1253 
and Deser, 2007] 1254 

1255 
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 1255 
Figure 11.  The Pacific Decadal Oscillation spatial and temporal structure: the leading 1256 
pattern SST and SLP anomalies north of 20°N and normalized time series of monthly 1257 
SST anomalies (PDO index, defined by Mantua et al. [1997].  Regressions of the PDO 1258 
index on the (a) observed SST (ci 0.1 °C per 1σ PDO value) and (b) SLP (ci 0.25 mb per 1259 
1σ PDO value). The SSTs were obtained from the HadSST data set for the period 1900-1260 
2004, and the SLP values from NCEP Reanalysis for the years 1948-2007.  (c) The 1261 
monthly PDO index (gray shading) and 12-month running mean (black line) during 1900-1262 
2007, obtained from [http://jisao.washington.edu/pdo/PDO.latest]. 1263 
 1264 
Figure 12. The SLP, flux and SST anomaly patterns associated with the Aleutian low 1265 
during winter (DJF).  (a) EOF 1 of SLP, regression values of the local (b) Qnet (contour 1266 
interval 2.5 W m-2) and (c) SST (CI is 0.05 deg C) anomalies on PC1 of SLP,  (d) EOF 1 1267 
of SST. All fields are obtained from a 50-year simulation of the GFDL AGCM coupled to 1268 
an ocean MLM over the ice-free ocean. 1269 
 1270 
Figure 13. Power spectrum of the observed PDO index. Dashed indicates the best fit 1271 
based on a first-order autoregressive model, thin solid line shows the theoretical slope for 1272 
intermediate frequency portion of the spectrum from a stochastic model. Adapted from 1273 
Qiu et al. [2007]. 1274 
 1275 
Figure 14. The 1977-1988 minus the 1970-1976 average SST during NDJFM from (a) 1276 
observations and (b) an ensemble average of 16 model simulations. The observations and 1277 
model integrations are described in Smith et al. [1996] and Alexander et al. [2002], 1278 
respectively. The model consists of an AGCM coupled to an ocean mixed layer ocean 1279 
model over the ice-free global oceans except in the central/eastern tropical Pacific (box) 1280 
where observed SSTs are specified. Negative values are shaded and the CI is 0.2 °C. 1281 
 1282 
Figure 15. The annual a) long-term mean and b) 1977-88 minus 1986-76 wind stress 1283 
(vectors) and its curl (contours) from the NCEP reanalysis. The ci is 5×10−8 N m−3 in a)  1284 
and 2×10−8 N m−3 in b) where the −1 × 10−8 N m−3 contour is also shown and values < 1285 
−2 × 10−8 N m−3 are shaded.  The annual c) long-term mean and d) 1977-88 minus 1986-1286 
76 geostrophic transport streamfunction, given by the Sverdrup minus Ekman currents: 1287 
the adjusted ocean circulation to wind curl forcing. The CI is 10 Sv in c) and 2 Sv in d), 1288 
where values > 4 Sv are shaded. Adapted from Deser et al. [1999]. 1289 
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 1290 
Figure 16. (a) The PDO time series and reconstruction (gray) based on contributions to 1291 
the PDO from ENSO teleconnections (Niño-3.4*), stochastic fluctuations in the Aleutian 1292 
low indicated by the North Pacific Index (NPI*), and the change in the ocean gyres given 1293 
by the difference in the zonal average ocean pressure difference (PDEL, indicative of the 1294 
slope of the thermocline and hence the strength/position of the ocean gyres) between 38° 1295 
and 40°N in the KE region. The index for thermocline depth estimate from 35°-38°N in 1296 
the KE region (P*AVG) does not explain a significant fraction of the SSTA variability of 1297 
the PDO. Dotted vertical lines mark the winters of 1976/77 and 1998/99. (b) Power 1298 
spectrum of the observed and reconstructed PDO, and contributions resulting from the 1299 
NPI*, Niño34*, and P*DEL. Spectra have been smoothed by three successive applications 1300 
of a five-point running mean. Note the dominance of the NPI* and ENSO* contributions 1301 
to the PDO at internal annual time scales and the roughly equal contribution of the three 1302 
factors at decadal time scales. From Schenider and Cornulle [2005].  1303 
 1304 
Figure 17. The spatial patterns for the three leading modes of Pacific SST variability 1305 
during 1945–93 obtained from rotated principal component analysis: (a) ENSO, (b) 1306 
Pacific Decadal Oscillation, and (c) North Pacific. Adapted from Barlow et al. [2001]. 1307 
 1308 
Plate 1. The ENSO signal including the atmospheric bridge as indicated by the composite 1309 
of 10 El Niño minus 10 La Niña events for SLP (contours, interval 0.5 mb) and SST 1310 
(shading, interval 0.2 °C) during (a) DJF when ENSO peaks and (b) the previous JAS.  1311 
The fields are obtained from NCEP atmospheric reanalysis [Kalnay et al., 1996; Kistler 1312 
et al., 2001]. 1313 
 1314 
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1315 

 1316 
 1317 
Figure 1. a) Annual mean and b) standard deviation of SST for the years 1985-2007 1318 
obtained from the NOAA high resolution (0.25° lat x lon) SST data set [Reynolds et al., 1319 
2007]. 1320 
 1321 
 1322 
 1323 
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 1324 
 1325 
Figure 2. Annual average ocean currents (m s-1) averaged over the upper 500 m from the 1326 
Simple Ocean Data Assimilation (SODA, Carton and Giese, 2008) for the years 1958-1327 
2001. The current strength is indicated by the three tone gray scale with maximum values 1328 
of ~0.7 m sec-1 in the Kuroshio.  1329 
 1330 

1331 
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 1331 
 1332 
 1333 
 1334 
Figure 3.  The mean ocean temperature (°C) and mixed layer depth (h) over the course of 1335 
the seasonal cycle in a 5°x5° box centered on 50°N, 145°W (where Weathership P was 1336 
located from the 1950s – 1980s) in the northeast Pacific. The temperature values are from 1337 
SODA and the h values from Monterey and Levitus [1997]. Arrows denote the 1338 
reemergence mechanism where surface heat flux anomalies create temperature anomalies 1339 
over the deep winter mixed layer; the anomalies are then sequestered in the summer 1340 
seasonal thermocline and return to the surface in the following winter. 1341 
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 1342 

 1343 
 1344 
Figure 4.  The long-term mean mixed layer depth (m) during (a) Mar and (b) Sep using a 1345 
density difference between the surface and base of the mixed layer of 0.125 kg m-3. Data 1346 
obtained from Monterey and Levitus [1997]. 1347 
 1348 
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 1349 

 1350 
 1351 
 1352 
Figure 5. The Pacific subtropical cell (STC): (a) Meridional streamfunction computed 1353 
from the NCAR OGCM driven by observed atmospheric surface conditions. The flow is 1354 
clockwise (counter clockwise) in the Northern (Southern Hemisphere). Contour interval 1355 
is 5 Sv. (b) The circulation with in the subsurface portion of the STC and subtropical 1356 
gyre. Arrows indicate the averaged upper-ocean velocities, integrated from the base of 1357 
the surface Ekman layer (50 m depth) to the depth of the 25 σθ potential density surface; 1358 
contours denote the mean potential vorticity (PV) on the 25 σθ surface, which outcrops 1359 
between 30°-40°N and the strongest equatorward flow in the subtropics. The currents 1360 
tend to conserve PV, thus the large values along 10°N, act as a partial barrier, and the 1361 
water subducted in the north Pacific takes a convoluted to reach the equator. Adapted 1362 
from Capotondi et al. [2005]. 1363 
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 1364 
 1365 
 1366 
Figure 6. Observed SST variance spectra (black line) in a 5°x5° box centered on 50°N, 1367 
145°W using 134 years of month anomalies from the HadSST data set [Rayner et al., 1368 
2006].  The gray and white cures are based on a AR(1) model, fit to the SST data: 1369 
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, σ is the standard 1370 
deviation and ! is a random number drawn from a Gaussian distribution. The gray 1371 
shading represents the 5th and 95th percentile bounds for 1200 134-yr simulated spectra; 1372 
the white line is the average of simulated spectra and overlays the theoretical spectra on 1373 
an AR(1) model, the discrete form of Equation 4. 1374 
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 1375 
 1376 
Figure 7. The reemergence mechanism as indicated by lead–lag regressions [°C (1°C)−1] 1377 
between temperature anomalies at 5 m in Apr–May, and temperature anomalies from the 1378 
previous Jan through the following Apr in the (b) east, (c) central, and (d) west Pacific 1379 
regions  [shown in (a)]. The contour interval is 0.1 and values greater than (b) 0.55, (c) 1380 
0.7, and (d) 0.75 are shaded to highlight the reemergence mechanism. Computed using 1381 
the NCEP ocean assimilation analyses [Ji et al., 1995]. Adapted from Alexander et al. 1382 
[1999]. 1383 
 1384 
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 1385 
 1386 
Figure 8. Sea surface height (SSH) anomalies along the zonal band of 32°–34°N from (a) 1387 
the satellite altimeter data and (b) the wind-forced baroclinic Rossby wave model; see Eq. 1388 
(5).  Adapted from Qiu et al. [2007]. 1389 
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 1390 
 1391 
 1392 

 1393 
 1394 
 1395 
Figure 9. Atmospheric a) forcing and b) response to SST anomalies in the Kuroshio 1396 
extension region. Regression of wind stress curl anomalies on the winter normalized SST 1397 
anomalies in the KE region (35°–45°N, 140°E–180°). (a) Annual mean wind stress curl 1398 
leading SST Index by 4 yr; both variables are smoothed with a 10-yr low-pass filter. (b) 1399 
Annual mean wind stress curl lagging the SST index by 1 yr based on unfiltered data. 1400 
The unfiltered regression pattern is further scaled by the ratio of the standard deviation of 1401 
10-yr low-pass-filtered SST index to that of unfiltered SST index. (Contour intervals are 1402 
0.2 × 10−8 N m−3. Negative values are dashed and shading indicates regressions 1403 
significant at 99%. Results are from a long coupled NCAR GCM simulation. Adapted 1404 
from Kwon and Deser [2007]. 1405 
 1406 
 1407 
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 1408 
 1409 
 1410 

 1411 
 1412 
 1413 
Figure 10. Relationship between temperature anomalies in the Kuroshio Extension and 1414 
changes in the ocean gyres. Simultaneous regression of DJFM subsurface zonal current 1415 
velocity along 150°E on the SST anomalies averaged over the KE region. Both variables 1416 
have been low-pass filtered to retain periods longer than 10 yr. Contour interval is 0.2 cm 1417 
s−1 °C−1, and the shading indicates regressions significant at 99%. Solid (dashed) contours 1418 
denote eastward (westward) velocity. Thin contours with boxed labels indicate the 1419 
climatological winter (DJFM) mean zonal velocity fields. Contour interval for the mean 1420 
zonal velocity is 2 cm s-1 Results are from a long coupled NCAR GCM simulation [Kwon 1421 
and Deser, 2007] 1422 
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 1423 
 1424 
 1425 
Plate 1. The ENSO signal including the atmospheric bridge as indicated by the composite 1426 
of 10 El Niño minus 10 La Niña events for SLP (contours, interval 0.5 mb) and SST 1427 
(shading, interval 0.2 °C) during (a) DJF when ENSO peaks and (b) the previous JAS.  1428 
The fields are obtained from NCEP atmospheric reanalysis [Kalnay et al., 1996; Kistler 1429 
et al., 2001]. 1430 
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 1431 
 1432 
 1433 
 1434 

 1435 
 1436 
Figure 11.  The Pacific Decadal Oscillation spatial and temporal structure: the leading 1437 
pattern SST and SLP anomalies north of 20°N and normalized time series of monthly 1438 
SST anomalies (PDO index, defined by Mantua et al. [1997].  Regressions of the PDO 1439 
index on the (a) observed SST (ci 0.1 °C per 1σ PDO value) and (b) SLP (ci 0.25 mb per 1440 
1σ PDO value). The SSTs were obtained from the HadSST data set for the period 1900-1441 
2004, and the SLP values from NCEP Reanalysis for the years 1948-2007.  (c) The 1442 
monthly PDO index (gray shading) and 12-month running mean (black line) during 1900-1443 
2007, obtained from [http://jisao.washington.edu/pdo/PDO.latest]. 1444 
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 1445 
 1446 

 1447 
 1448 
Figure 12. The SLP, flux and SST anomaly patterns associated with the Aleutian low 1449 
during winter (DJF).  (a) EOF 1 of SLP, regression values of the local (b) Qnet (contour 1450 
interval 2.5 W m-2) and (c) SST (CI is 0.05 deg C) anomalies on PC1 of SLP,  (d) EOF 1 1451 
of SST. All fields are obtained from a 50-year simulation of the GFDL AGCM coupled to 1452 
an ocean MLM over the ice-free ocean. 1453 
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 1454 

 1455 
 1456 
 1457 
Figure 13. Power spectrum of the observed PDO index. Dashed indicates the best fit 1458 
based on a first-order autoregressive model, thin solid line shows the theoretical slope for 1459 
intermediate frequency portion of the spectrum from a stochastic model. Adapted from 1460 
Qiu et al. [2007].  1461 
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 1462 
 1463 
Figure 14. The 1977-1988 minus the 1970-1976 average SST during NDJFM from (a) 1464 
observations and (b) an ensemble average of 16 model simulations. The observations and 1465 
model integrations are described in Smith et al. [1996] and Alexander et al. [2002], 1466 
respectively. The model consists of an AGCM coupled to an ocean mixed layer ocean 1467 
model over the ice-free global oceans except in the central/eastern tropical Pacific (box) 1468 
where observed SSTs are specified. Negative values are shaded and the CI is 0.2 °C. 1469 
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 1470 
 1471 
Figure 15. The annual a) long-term mean and b) 1977-88 minus 1986-76 wind stress 1472 
(vectors) and its curl (contours) from the NCEP reanalysis. The ci is 5×10−8 N m−3 in a)  1473 
and 2×10−8 N m−3 in b) where the −1 × 10−8 N m−3 contour is also shown and values < 1474 
−2 × 10−8 N m−3 are shaded.  The annual c) long-term mean and d) 1977-88 minus 1986-1475 
76 geostrophic transport streamfunction, given by the Sverdrup minus Ekman currents: 1476 
the adjusted ocean circulation to wind curl forcing. The CI is 10 Sv in c) and 2 Sv in d), 1477 
where values > 4 Sv are shaded. Adapted from Deser et al. [1999]. 1478 
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 1479 

 1480 
 1481 
Figure 16. (a) The PDO time series and reconstruction (gray) based on contributions to 1482 
the PDO from ENSO teleconnections (Niño-3.4*), stochastic fluctuations in the Aleutian 1483 
low indicated by the North Pacific Index (NPI*), and the change in the ocean gyres given 1484 
by the difference in the zonal average ocean pressure difference (PDEL, indicative of the 1485 
slope of the thermocline and hence the strength/position of the ocean gyres) between 38° 1486 
and 40°N in the KE region. The index for thermocline depth estimate from 35°-38°N in 1487 
the KE region (P*AVG) does not explain a significant fraction of the SSTA variability of 1488 
the PDO. Dotted vertical lines mark the winters of 1976/77 and 1998/99. (b) Power 1489 
spectrum of the observed and reconstructed PDO, and contributions resulting from the 1490 
NPI*, Niño34*, and P*DEL. Spectra have been smoothed by three successive applications 1491 
of a five-point running mean. Note the dominance of the NPI* and ENSO* contributions 1492 
to the PDO at internal annual time scales and the roughly equal contribution of the three 1493 
factors at decadal time scales. From Schenider and Cornulle [2005].  1494 
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Figure 17. The spatial patterns for the three leading modes of Pacific SST variability 1501 
during 1945–93 obtained from rotated principal component analysis: (a) ENSO, (b) 1502 
Pacific Decadal Oscillation, and (c) North Pacific. Adapted from Barlow et al. [2001]. 1503 


